Albert Lévai [a],* and József Jekő [b]

[a] Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary,
[b] ICN Hungary Co. Ltd., H-4440 Tiszavasvári, Hungary
Received November 24, 2004

Dedicated to Professor Dr. Lubor Fisera on the occasion of his 60th birthday

A simple and convenient method has been worked out for the preparation of 4-methyl-2-thiocoumarins by the reaction of the appropriate 4-methylcoumarins with Lawesson's Reagent in hot anhydrous toluene.

J. Heterocyclic Chem., 42, 739 (2005).

First synthesis of the 7-hydroxy-4-methylcoumarin (β -methylumbelliferone) (1) was performed by von Pechmann and Duisberg [1] as early as 1883 by the reaction of resorcinol and ethyl acetoacetate. Later, von Pechmann *et al.* [2,3] worked out other procedures for the synthesis of this coumarin. Drysdale *et al.* [4] reacted resorcinol and methyl 2,3-butadienoate to obtain 7-hydroxy-4-methylcoumarin (1). Another method, invented by Taylor and Cassell [5], is based on the reaction of 2,4-dihydroxyacetophenone and trimethylsilylketene and affords compound 1 in high (86%) yield. This hydroxycoumarin was successfully utilized as starting material for the synthesis of a wide variety of 4-methylcoumarin derivatives.

4-Methylcoumarin-7-yloxy tetra-*N*-acetyl- β -chitotetroside and similar β -chitotrioside were obtained under Koenigs-Knorr reaction conditions [6]. A neuraminic acid derivative has also been synthesized [7]. All these glycosides were utilized for enzyme inhibition studies [6,7].

Sulfate and sulfamate derivatives were synthesized for steroid sulfatase assay [8]. Various 7-alkoxy-4-methylcoumarins, including β -lactam [9], benzyloxy [10], phenazine [11] and carboxymethyl derivatives [12] were prepared by the reaction of the 7-hydroxy group of compound **1** with the appropriate reagent. Most of these coumarins were used for enzyme inhibition studies and other biological purposes. All these examples unequivocally prove the synthetic utility of the β -umbelliferone even today.

Various 7-benzyloxycoumarins have already been synthesized for enzyme inhibition studies [10]. On the basis of the results obtained with these compounds, it appeared expedient to synthesize a series of 7-benzyloxy-4-methylcoumarins systematically substituted in their benzyl moiety. Compound **1** was allowed to react with benzyl chlorides substituted either with an electron donor or an electron acceptor substituent in hot acetone solution to afford new 7-benzyloxy-4-methylcoumarins **3-11** in high (71-93%) yields (Scheme 1). The new coumarin derivatives can be advantageously utilized for the study of structureactivity relationships.

Although numerous 4-methylcoumarin derivatives have been synthesized, their conversion into 4-methyl-2-thiocoumarins has hitherto received less attention. 7-Methoxy-4-methyl-2-thiocoumarin was prepared by the reaction of 7-methoxy-4-methylcoumarin with silicon disulphide or boron sulphide [13] in refluxing chloroform and with phosphorus pentasulphide [14] in hot benzene. However, these reagents sometimes require special care which may be a disadvantage concerning their utilization. The consequence of this difficulty is that nowadays these reagents are almost out of use.

In our previous studies, Lawesson's Reagent [2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide] [15] proved to be the reagent of choice for the replacement of an oxygen atom by a sulfur atom in the case of chromones [16], 1-thiochromones [17], flavones [18], isoflavones [16], 1,4- and 1,5-benzoxazepines [19-21] and 1,5-benzothiazepines [22]. Therefore, this reagent has been considered convenient for the conversion of 4-methylcoumarins into 4-methyl-2-thiocoumarins as well.

7-Benzyloxy-4-methylcoumarins **2-11** were allowed to react with Lawesson's Reagent [15] in hot anhydrous toluene and 7-benzyloxy-4-methyl-2-thiocoumarins **12-21** were obtained in high (75-91%) yields (Scheme 1). 7-Benzenesulfonyloxy-4-methylcoumarin (22) [23] and 4-methyl-7-tosyloxycoumarin (23) [23] have also been treated with Lawesson's Reagent under the same reaction conditions to afford the 2-thioanalogues 24 and 25 in high (89% and 90%) yields (Scheme 2). sium iodide (0.5 g), potassium carbonate (10.0 g) and anhydrous acetone (200 ml) was refluxed for 6 h, then the inorganic salts were removed by filtration. The solvent was evaporated under reduced pressure and the residue was crystallized from methanol to obtain compounds **3-11**.

Structures of all new compounds (3-11, 12-21, 24 and 25) have been elucidated by elemental analyses, mass spectrometry, ¹H and ¹³C nmr spectroscopies (*cf*. Experimental). Both ¹H and ¹³C nmr spectra unequivocally prove the structure of each compound. Formation of the 4-methyl-2-thiocoumarin derivatives is reflected in the downfield shift of the 3-H proton signal in their ¹H nmr spectra. In the ¹³C nmr spectra a C=S signal appears at around 197 ppm instead of the C=O signal at about 161 ppm.

Electron impact (70 eV) mass spectra of these coumarins are very similar and relatively simple. A molecular ion can be observed in all cases and the base peak is mainly the $Ar(R)-CH_2^+$ ion. Fragmentation of the coumarin ring system corroborates the structures elucidated by nmr spectroscopic measurements.

In summary, we have introduced a simple and convenient procedure for the preparation of 4-methyl-2-thiocoumarins. The Lawesson's Reagent could be advantageously utilized in the case of these coumarin derivatives for the replacement of an oxygen atom by a sulfur atom, too.

EXPERIMENTAL

Melting points were determined with a Koffler hot-stage apparatus and are uncorrected. Nmr spectra were recorded on the Varian 200 spectrometer at 200/50 MHz in CDCl₃ (internal standard TMS, $\delta = 0.0$ ppm) at room temperature. Mass spectra were measured on the VG TRIO-2 in the EI mode at 70 eV. Elemental analyses were measured in-house with a Carlo Erba 1106 EA apparatus. Tlc was performed on Kieselgel 60 F₂₅₄ (Merck) layer using 1,2-dichloroethane or hexane:acetone (7:3 v/v) as eluents. Starting materials **1**, **2**, **22** and **23** were synthesized according to known procedures [10,23].

General Procedure for the Preparation of 7-Benzyloxy-4-methylcoumarins **3-11**.

A mixture of 7-hydroxy-4-methylcoumarin (1, 20.0 mmoles), appropriately substituted benzyl chloride (22.0 mmoles), potas4-Methyl-7-(2-methylbenzyloxy)coumarin (3).

This compound was prepared as white needles in 90% yield, mp 148-149°; ¹H nmr: δ 2.50 (3H, s, Me), 2.52 (3H, s, Me), 5.12 (2H, s, CH₂), 6.18 (1H, s, 3-H), 6.93-7.56 (m, 7 arom. H); ¹³C nmr: δ 18.3, 18.6, 69.9, 101.8, 112.0, 112.8, 113.8, 125.6, 126.2, 128.7, 130.6, 133.7, 136.8, 152.6, 155.3, 161.3, 161.9; ms: 280 (M⁺, 5), 176 (2), 147 (2), 105 (100) *m/z*.

Anal. Calcd. for $C_{18}H_{16}O_3$: C, 77.12; H, 5.75. Found: C, 77.26; H, 5.78.

4-Methyl-7-(3-methylbenzyloxy)coumarin (4).

This substance was obtained as white needles in 85% yield, mp 94-95°; ¹H nmr: δ 2.50 (3H, s, Me), 2.53 (3H, s, Me), 5.12 (2H, s, CH₂), 6.17 (1H, s, 3-H), 6.91-7.57 (m, 7 arom. H); ¹³C nmr: δ 18.4, 21.2, 70.5, 101.2, 112.1, 112.9, 113.8, 124.7, 125.6, 128.3, 128.7, 129.2, 135.9, 138.9, 152.6, 155.4, 161.4, 161.9; ms: 280 (M⁺,11), 176 (3), 147 (3), 105 (100) *m/z*.

Anal. Calcd. for $C_{18}H_{16}O_3$: C, 77.12; H, 5.75. Found: C, 77.29; H, 5.69.

4-Methyl-7-(4-methylbenzyloxy)coumarin (5).

This compound was isolated as white needles in 79% yield, mp 125-126°; ¹H nmr: δ 2.50 (3H, s, Me), 2.53 (3H, s, Me), 5.10 (2H, s, CH₂), 6.14 (1H, s, 3-H), 6.90-7.53 (m, 7 arom. H); ¹³C nmr: δ 18.3, 20.9, 70.3, 101.9, 111.9, 112.9, 113.7, 125.6, 127.7, 129.5, 132.9, 138.3, 152.6, 155.3, 161.4, 161.9; ms: 280 (M⁺, 4), 176 (2), 147 (2), 105 (100) *m/z*.

Anal. Calcd. for $C_{18}H_{16}O_3$: C, 77.12; H, 5.75. Found: C, 77.34; H, 5.72.

7-(2-Fluorobenzyloxy)-4-methylcoumarin (6).

This substance was prepared as white plates in 74% yield, mp 146-147°; ¹H nmr: δ 2.51 (3H, s, Me), 5.23 (2H, s, CH₂), 6.18 (1H, s, 3-H), 6.92-7.57 (m, 7 arom. H); ¹³C nmr: δ 18.3, 64.1, 101.9, 112.1, 112.6, 113.9, 115.3, 115.7, 124.4, 125.7, 129.8, 130.3, 152.6, 155.3, 161.2, 161.6; ms: 284 (M⁺, 8), 176 (2), 147 (2), 109 (100) *m/z*.

Anal. Calcd. for $C_{17}H_{13}FO_3$: C, 71.82; H, 4.61. Found: C, 71.75; H, 4.66.

7-(3-Fluorobenzyloxy)-4-methylcoumarin (7).

This compound was obtained as white plates in 80% yield, mp 149-150°; ¹H nmr: δ 2.44 (3H, s, Me), 5.17 (2H, s, CH₂), 6.18

(1H, s, 3-H), 6.88-7.54 (m, 7 arom. H); 13 C nmr: δ 18.4, 69.5, 101.9, 112.2, 112.8, 114.0, 114.5, 115.0, 115.4, 122.8, 125.7, 130.5, 138.6, 152.6, 155.4, 161.3, 161.5; ms: 284 (M⁺, 11), 176 (2), 147 (2), 109 (100) *m*/*z*.

Anal. Calcd. for C₁₇H₁₃FO₃: C, 71.82; H, 4.61. Found: C, 71.78; H, 4.64.

7-(4-Fluorobenzyloxy)-4-methylcoumarin (8).

This substance was prepared as white plates in 87% yield, mp 134-135°; ¹H nmr: δ 2.44 (3H, s, Me), 5.11 (2H, s, CH₂), 6.16 (1H, s, 3-H), 6.89-756 (m, 7 arom. H); ¹³C nmr: δ 18.4, 69.7, 101.9, 112.2, 112.8, 113.9, 115.5, 115.9, 125.7, 129.6, 131.7, 152.6, 155.4, 161.3, 161.7; ms: 284 (M⁺, 5), 262 (1), 147 (3), 109 (100) *m/z*.

Anal. Calcd. for $C_{17}H_{13}FO_3$: C.71.82; H, 4.61. Found: C, 71.89; H, 4.64.

7-(2-Chlorobenzyloxy)-4-methylcoumarin (9).

This substance was obtained as pale yellow needles in 93% yield, mp 154-155°; ¹H nmr: δ 2.41 (3H, s, Me), 5.26 (2H, s. CH₂), 6.17 (1H, s, 3-H), 6.90-7.53 (m, 7 arom. H); ¹³C nmr: δ 18.4, 67.5, 102.2, 112.3, 112.7, 114.0, 125.7, 127.2, 128.9, 129.5, 129.7, 132.9, 133.7, 152.6, 155.4, 161.3, 161.6; ms: 300 (M⁺, 8), 176 (2), 147 (2), 125 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃ClO₃: C, 67.89; H, 4.36. Found: C, 67.98; H, 4.31.

7-(4-Chlorobenzyloxy)-4-methylcoumarin (10).

This compound was prepared as pale yellow plates in 88% yield, mp 139-140°; ¹H nmr: δ 2.42 (3H, s, Me), 5.12 (2H, s, CH₂), 6.17 (1H, s, 3-H), 6.88-7.52 (m, 7 arom. H); ¹³C nmr: δ 18.3, 69.5, 101.9, 112.2, 112.8, 113.9, 125.7, 128.8, 128.9, 134.2, 134.5, 152.6, 155.3, 161.2, 161.6; ms: 300 (M⁺, 6), 176 (2), 147 (4), 125 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃ClO₃: C, 67.89; H, 4.36. Found: C, 67.98; H, 4.32.

4-Methyl-7-(4-nitrobenzyloxy)coumarin (11).

This substance was obtained as yellow needles in 71% yield, mp 204-205°; ¹H nmr: δ 2.44 (3H, s, Me), 5.24 (2H, s, CH₂), 6.18 (1H, s, 3-H), 6.87-8.30 (m, 7 arom. H); ¹³C nmr: δ 18.0, 68.6, 101.9, 111.6, 112.8, 113.7, 123.8, 126.8, 128.6, 144.4, 147.4, 153.6, 154.9, 160.3, 161.2; ms: 311 (M⁺, 10), 176 (2), 147 (2), 136 (100) *m/z*.

Anal. Calcd. for $C_{17}H_{13}NO_5$: C, 65.59; H, 4.21; N, 4.49. Found: C, 65.48; H, 4.25; N, 4.43.

General Procedure for the Preparation of 4-Methyl-2-thiocoumarins 12-21, 24 and 25.

A mixture of 4-methylcoumarin (2-11, 22 and 23, 5.0 mmoles), Lawesson's Reagent (6.0 mmoles) and anhydrous toluene (30 ml) was refluxed for 3 h and then the solvent was evaporated under reduced pressure. The residue was crystallized from methanol to afford 4-methyl-2-thiocoumarins 12-21, 24 and 25.

7-Benzyloxy-4-methyl-2-thiocoumarin (12).

This compound was obtained as yellow needles in 77% yield, mp 151-152°; ¹H nmr: δ 2.32 (3H, s, Me), 5.14 (2H, s. CH₂), 6.97-7.58 (m, 3-H + 8 arom. H); ¹³C nmr: δ 17.7, 70.5, 101.5, 114.7, 115.5, 125.6, 126.7, 127.5, 128.5, 128.9, 135.7, 144.9, 158.0, 162.2, 197.6; ms: 282 (M⁺, 17), 250 (3), 136 (3),

91 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₄O₂S: C, 72.33; H, 4.99. Found: C, 72.46; H, 4.92.

4-Methyl-7-(2-methylbenzyloxy)-2-thiocoumarin (13).

This compound was isolated as yellow needles in 89% yield, mp 148-149°; ¹H nmr: δ 2.35 (3H, s, Me), 2.40 (3H, s, Me), 5.12 (2H, s, CH₂), 6.96-7.60 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.8, 18.6, 69.2, 101.7, 114.7, 115.5, 125.6, 126.3, 126.7, 128.6, 128.8, 130.7, 133.5, 136.7, 145.0, 158.1, 162.4, 197.6; ms: 296 (M⁺, 11), 218 (10), 155 (8), 105 (100) *m/z*.

Anal. Calcd. for $C_{18}H_{16}O_2S$: C, 72.96; H, 5.44. Found: C, 72.982; H, 5.49.

4-Methyl-7-(3-methylbenzyloxy)-2-thiocoumarin (14).

This substance was obtained as yellow needles in 76% yield, mp 127-128°; ¹H nmr: δ 2.31 (3H, s, Me), 2.38 (3H, s, Me), 5.08 (2H, s, CH₂), 6.97-7.56 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.8, 21.2, 70.6, 101.4, 114.8, 115.5, 124.6, 125.6, 126.7, 128.3, 128.8, 129.3, 135.6, 138.6, 145.0, 158.0, 162.3, 197.6; ms: 296 (M⁺, 19), 264 (3), 155 (6), 105 (100) *m/z*.

Anal. Calcd. for $C_{18}H_{16}O_2S$: C, 72.96; H, 5.44. Found: C, 73.11; H, 5.37.

4-Methyl-7-(4-methylbenzyloxy)-2-thiocoumarin (15).

This compound was prepared as yellow needles in 75% yield, mp 164-165°; ¹H nmr: δ 2.32 (3H, s, Me), 2.38 (3H, s, Me), 5.10 (2H, s, CH₂), 6.97-7.56 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.7, 20.9, 70.4, 101.4, 114.7, 115.3, 125.5, 126.6, 127.6, 129.5, 132.6, 138.3, 145.0, 157.9, 162.3, 197.5; ms: 296 (M⁺, 16), 264 (2), 147 (3), 105 (100) *m/z*.

Anal. Calcd. for $C_{18}H_{16}O_2S$: C, 72.96; H, 5.44. Found: C, 72.84; H, 5.48.

7-(2-Fluorobenzyloxy)-4-methyl-2-thiocoumarin (16).

This substance was obtained as yellow plates in 91% yield, mp 201-202°; ¹H nmr: δ 2.37 (3H, s, Me), 5.11 (2H, s, CH₂), 6.97-7.60 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.8, 64.4, 101.5, 114.6, 115.5, 115.9, 124.5, 125.7, 126.9, 129.8, 130.4, 130.6, 144.9, 158.0, 162.0, 197.6; ms: 300 (M⁺, 22), 268 (3), 147 (2), 109 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃FO₂S: C, 67.99; H, 4.36. Found: C, 67.85; H, 4.31.

7-(3-Fluorobenzyloxy)-4-methyl-2-thiocoumarin (17).

This compound was prepared as yellow plates in 75% yield, mp 147-148°; ¹H nmr: δ 2.34 (3H, s, Me), 5.14 (2H, s, CH₂), 6.96-7.58 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.7, 69.6, 101.4, 114.0, 115.1, 115.7, 122.8, 125.7, 126.8, 130.6, 138.3, 144.9, 157.9, 161.9, 165.6, 197.5; ms: 300 (M⁺, 19), 268 (4), 147 (2), 109 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃FO₂S: C, 67.99; H, 4.36. Found: C, 68.12; H, 4.29.

7-(4-Fluorobenzyloxy)-4-methyl-2-thiocoumarin (18).

This compound was obtained as yellow needles in 82% yield, mp 135-136°; ¹H nmr: δ 2.36 (3H, s, Me), 5.10 (2H, s, CH₂), 6.96-7.60 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.7, 69.8, 101.4, 114.7, 115.6, 116.0, 125.7, 126.8, 129.4, 129.6, 131.4, 144.9, 158.0, 160.4, 162.0, 165.4, 197.6; ms: 300 (M⁺, 13), 268 (2), 147 (2), 109 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃FO₂S: C, 67.99; H, 4.36. Found: C, 67.81; H, 4.27.

7-(2-Chlorobenzyloxy)-4-methyl-2-thiocoumarin (19).

This substance was prepared as yellow plates in 88% yield, mp 171-172°; ¹H nmr: δ 2.36 (3H, s, Me), 5.26 (2H, s, CH₂), 7.03-762 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.8, 67.7, 101.6, 114.5, 115.7, 125.7, 126.9, 128.8, 129.6, 132.9, 133.4, 144.9, 158.0, 161.9, 197.6; ms: 316 (M⁺, 15), 284 (2), 147 (2), 125 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃ClO₂S: C, 64.46; H, 4.14. Found: 64.38; H, 4.19.

7-(4-Chlorobenzyloxy)-4-methyl-2-thiocoumarin (20).

This compound was obtained as yellow plates in 82% yield, mp 155-156°; ¹H nmr: δ 2.34 (3H, s, Me), 5.12 (2H, s, CH₂), 6.97-7-59 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.8, 69.7, 101.5, 114.6, 115.6, 125.7, 126.9, 128.9, 129.0, 134.2, 134.4, 144.9, 157.9, 161.9, 197.5; ms: 316 (M⁺, 12), 284 (2), 147 (2), 125 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃ClO₂S: C, 64.46; H, 4.14. Found: C, 64.53; H, 4.21.

4-Methyl-7-(4-nitrobenzyloxy)-2-thiocoumarin (21).

This compound was prepared as yellow plates in 76% yield, mp 198-199°; ¹H nmr: δ 2.32 (3H, s, Me), 5.25 (2H, s, CH₂), 6.98-8.26 (m, 3-H + 7 arom. H); ¹³C nmr: δ 17.7, 69.1, 101.5, 114.1, 115.9, 124.0, 125.9, 127.0, 127.8, 143.1, 144.7, 147.9, 157.9, 161.5, 197.5; ms: 327 (M⁺, 60), 281 (11), 192 (43), 148 (100) *m/z*.

Anal. Calcd. for C₁₇H₁₃NO₄S: C, 62.38; H, 4.01; N, 4.28. Found: C, 62.51; H, 4.08; N, 4.21.

7-Benzenesulfonyloxy-4-methyl-2-thiocoumarin (24).

This substance was obtained as yellow needles in 89% yield, mp 177-178°; ¹H nmr: δ 2.34 (3H, s, Me), 7.03-7.90 (m, 3-H + 8 arom. H). ¹³C nmr: δ 17.7, 55.4, 95.0, 96.2, 110.6, 119.7, 125.8, 128.4, 129.2, 129.6, 134.9, 143.2, 151.7, 156.3, 197.0; ms: 332 (M⁺, 57), 191 (24), 141 (46), 77 (100) *m/z*.

Anal. Calcd. for C₁₆H₁₂O₄S₂: C, 57.83; H, 3.64. Found: 57.95; H, 3.56.

4-Methyl-7-tosyloxy-2-thiocoumarin (25).

This compound was prepared as yellow needles in 90% yield, mp 140-141°; ¹H nmr: δ 2.19 (3H, s, Me), 2.26 (3H, s, Me), 7.04-7.80 (m, 3-H + 7 arom. H), ¹³C nmr: δ 17.7, 21.6, 120.0, 120.4, 125.7, 128.5, 129.2, 130.2, 143.2, 146.3, 151.9, 156.4, 197.2; ms: 346 (M⁺, 27), 314 (4), 155 (46), 91 (100) *m/z*.

Anal. Calcd. for $C_{17}H_{14}O_4S_2{:}$ C, 58.96; H, 4.07. Found: C, 58.84; H, 4.13.

Acknowledgements.

The present study was sponsored by the Hungarian National Research Foundation (Grant No. OTKA T034123) for which our gratitude is expressed. Technical assistance of Mrs. M. Nagy is highly appreciated.

REFERENCES AND NOTES

[1] H. von Pechmann and C. Duisberg, *Ber. Dtsch. Chem. Ges.*, **16**, 2119 (1883).

[2] H. von Pechmann and O. Schwarz, *Ber. Dtsch. Chem. Ges.*, **32**, 3696 (1899).

[3] H. von Pechmann and E. Hanke, *Ber. Dtsch. Chem. Ges.*, **34**, 354 (1901).

[4] J. J. Drysdale, H. B. Stevenson and W. H. Sharkey, J. Am. Chem. Soc., 81, 4908 (1959).

[5] R. T. Taylor and R. A. Cassell, Synthesis, 672 (1982).

[6] T. Inaba, T. Ohgushi, Y. Iga and E. Hasegawa, *Chem. Pharm. Bull.*, **32**, 1597 (1984).

[7] Q. Wang, M. Wolff, T. Polat, Y. Du and R. J. Linhardt, *Bioorg. Med. Chem. Lett.*, **10**, 941 (2000).

[8] M. Bilban, A. Billich, M. Auer and P. Nussbaumer, *Bioorg. Med. Chem. Lett.*, **10**, 967 (2000).

[9] P. R. Bonneau, F. Hasani, C. Plouffe, E. Malenfant, S. R. LaPlante, I. Guse, W. W. Ogilvie, R. Plante, W. C. Dawidson, J. L. Hopkins, M. M. Morelock, M. G. Cordingley and R. Déziel, *J. Am. Chem. Soc.*, **121**, 2965 (1999).

[10] C. Gnerre, M. Catto, F. Leonetti, P. Weber, P-A. Carrupt, C. Altomare, A. Carotti and B. Testa, *J. Med. Chem.*, **43**, 4747 (2000).

[11] N. L. Maidwell, M. R. Rezai, C. A. Roeschlaub and P. G. Sammes, J. Chem. Soc. Perkin Trans. 1, 1541 (2000).

[12] S. Chimichi, M. Boccalini and B. Cosimelli, *Tetrahedron*, **58**, 4851 (2002).

[13] F. M. Dean, J. Goodchild and A. W. Hill, J. Chem. Soc. C, 2192 (1969).

[14] H. Nakazumi and T. Kitao, Bull. Chem. Soc. Jpn., **52**, 160 (1979).

[15] B. S. Pedersen, S. Scheibye, N. H. Nilsson and S. O. Lawesson, *Bull. Chem. Soc. Belges*, **87**, 223 (1978).

[16] A. Lévai, J. Chem. Research (S), 163 (1992).

[17] A. Lévai and Z. Szabó, Bull.Chim. Soc. Fr., 128, 976 (1991).

[18] A. Lévai and Z. Szabó, J. Chem. Research (S), 380 (1992).

[19] A. Lévai, T. Tímár, L. Frank and S. Hosztafi, Heterocycles,

34, 1523 (1992).

[20] A. Lévai and Z. Bálint, Arch. Pharm. (Weinheim), **326**, 73 (1993).

[21] G. Tóth, J. Halász, A. Lévai and B. Rezessy, *Monatsh. Chem.*, **128**, 625 (1997).

[22] A. Lévai, Arch. Pharm. (Weinheim), 325, 721 (1992).

[23] A. A. Shamshurin and R. A. Ibadulin, *Trudy Uzbekskogo Gosudarst. Univ.*, 1 (1941); *Chem. Abstr.*, **35**, 37638 (1941).